Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology Search > Browse Articles > Search



 
DETECTION OF COGNITIVE AND VISUAL DISTRACTION USING RADIAL BASIS PROBABILISTIC NEURAL NETWORKS
Joonwoo Son, Myoungouk Park
Int J Automot Technol. 2018;19(5):935-940.    DOI: https://doi.org/10.1007/s12239-018-0090-4
      
 Other Fields of Automotive Engineering
HUMAN RIDE COMFORT PREDICTION OF DRIVE TRAIN USING MODELING METHOD BASED ON ARTIFICIAL NEURAL NETWORKS
S. LERSPALUNGSANTI, A. ALBERS, S. OTT, T. DÜSER
Int J Automot Technol. 2015;16(1):153-166.
 Intelligent Vehicle / Transportation Systems
DRIVING ENVIRONMENT ASSESSMENT USING FUSION OF IN- AND OUT-OF-VEHICLE VISION SYSTEMS
S. Y. KIM, H. C. CHOI, W. J. WON, S. Y. OH
Int J Automot Technol. 2009;10(1):103-113.
      
 Materials and Recycling, Manufacturing
NEURAL NETWORK MODEL FOR DESIGNING AUTOMOTIVE DEVICES USING SMD LEDS
A. V. ORTEGA, I. N. SILVA
Int J Automot Technol. 2008;9(2):203-210.
      
 Engine, Emission Technology
ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL
M. S. SANGHA, D. L. YU, * and J. B. GOMM
Int J Automot Technol. 2007;8(5):637-650.
      
1 |
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971/2   FAX: +82-2-564-3973   E-mail: car@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers. All rights reserved.                 Developed in M2community
Close layer
prev next