| Home | KSAE | E-Submission | Sitemap | Contact Us
top_img
International Journal of Automotive Technology > Volume 19(4); 2018 > Article
International Journal of Automotive Technology 2018;19(4): 615-622.
doi: https://doi.org/10.1007/s12239-018-0058-4
COMPARISON OF THE SPRAY AND THE SPRAY/WALL INTERACTION OF TWO GASOLINE INJECTORS
Nozzle geometry, Piston wetting, Infrared thermography, Heat transfer, Frank Beyrau
Otto-von-Guericke-University Magdeburg
ABSTRACT
One important parameter influencing mixture formation and spray/wall interaction within engines is the geometry of the nozzle. In contrast to Diesel nozzles, the influence of the orifice geometry on spray formation has hardly be investigated for gasoline nozzles. In order to demonstrate the potential of adjusting the nozzle geometry of a modern GDI nozzle, we compare two six-hole, high-pressure nozzles with an identical structure, but different rounding radius of the orifice hole-inlet and different orifice hole-geometries: nozzle A with a rounded inlet and an orifice length to diameter ratio of 3/2 and nozzle B with a sharp inlet and an orifice length to diameter ratio of 1. In a first measurement campaign the spray formation is visualized using high-speed shadowgraphy imaging. The results show differences in spray angle and penetration depth. In a second measurement campaign we examine the spray/wall interaction and wall film formation by means of infrared thermography. The thermography measurements indicate that the geometry of nozzle B produces sprays with beneficial characteristics. This is very important for a clean combustion process and a decrease of soot emissions.
Key Words: Nozzle geometry, Piston wetting, Infrared thermography, Heat transfer
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971/2   FAX: +82-2-564-3973   E-mail: car@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers. All rights reserved.                 Developed in M2community
Close layer
prev next