| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 17(2); 2016 > Article
International Journal of Automotive Technology 2016;17(2): 205-211.
doi: https://doi.org/10.1007/s12239-016-0020-2
EFFECT OF STEADY AIRFLOW FIELD ON DRAG AND DOWNFORCE
S. C. KIM, S. Y. HAN
Hanyang University
ABSTRACT
The purpose of this study is to examine the effect of the steady airflow field of a rear spoiler on the coefficients of drag (CD) and downforce (CDF). The type of spoiler is suggested as a two-jointed arm model that mimics the flapping flight mechanism of the Canada goose. Computational fluid dynamics (CFD) technique was used for the steady airflow analysis of a vehicle implemented with various spoiler topologies. We evaluated CD and CDF due to the three types of airfoils and the five phases of each airfoil. We obtained the following conclusions from the results: (1) We found that the best cases for CD and CDF were the case of Phase 5 and symmetry airfoil, and the case of Phase 1 and reverse airfoil, respectively. (2) It is clear that CD becomes the largest at Phase 1 of the reverse airfoil, since the eddy magnitude at the rear of the vehicle is the largest, and CDF also becomes the largest during that phase, since the pressure distribution on the upper surface of the spoiler is very large. (3) As Phase 1 moves to Phase 5 in the same type of airfoil, it is advantageous for CD and disadvantageous for CDF, respectively.
Key Words: Rear spoiler, Downforce, Goose’s flapping, Computational fluid dynamics (CFD), Airfoil
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next