| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 18(6); 2017 > Article
International Journal of Automotive Technology 2017;18(6): 1067-1076.
doi: https://doi.org/10.1007/s12239-017-0104-7
DESIGN OF EMERGENCY BRAKING ALGORITHM FOR PEDESTRIAN PROTECTION BASED ON MULTI-SENSOR FUSION
Hyuck-Kee Lee, Seong-Geun Shin, Dong-Soo Kwon
KATECH
ABSTRACT
Globally, safety has become an increasingly important issue in the automotive industry. In an attempt to reduce traffic fatalities, UNECE launched a new EU Road Safety Program which aims to decrease the number of road deaths by half by 2020. AEB (Autonomous Emergency Braking) is a very effective active safety system intended to reduce fatalities. This study involves the design of a multi-sensor data fusion strategy and decision-making algorithm for AEB pedestrian. Possible collision avoidance scenarios according to the EuroNCAP protocol are analyzed and a robust pedestrian tracking strategy is proposed. The performance of the AEB system is enhanced by using a braking model to predict the collision avoidance time and by designing the system activation zone according to the relative speed and possible distance required to stop for pedestrians. The AEB activation threshold requires careful consideration. The test results confirm the advantages of the proposed algorithm, the performance of which is described in this paper.
Key Words: Emergency braking, AEBS, Pedestrian, Sensor fusion, Decision making, Target tracking
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next