| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 21(2); 2020 > Article
International Journal of Automotive Technology 2020;21(2): 371-383.
doi: https://doi.org/10.1007/s12239-020-0035-6
EFFECT OF SHAFT MISALIGNMENT ON HYPOID GEAR PAIR DRIVEN THROUGH A UNIVERSAL JOINT
Zhenghong Shi, Teik Chin Lim
University of Cincinnati
PDF Links Corresponding Author.  Zhenghong Shi , Email. shizg@mail.uc.edu
ABSTRACT
An enhanced hypoid geared rotor system model incorporating a universal joint that connects driveline propeller shaft and pinion shaft is introduced in this study. The effect of shaft misalignment and pinion mass unbalance on hypoid gear dynamic response is evaluated under different assembly conditions. A nonlinear 14-DOF lumped parameter model based on coupled multi-body dynamics is applied by considering large rotational displacement in torsional direction. Results demonstrate three main influences from shaft misalignment and mass unbalance including speed and torque fluctuation as well as external bending moment on pinion shaft. It is also observed that bending moment generated can exert additional load on pinion shaft bearings which is found to be more sensitive to misalignment angle compared to dynamic response along lineof-action. Besides, shaft misalignment and mass unbalance excitation will interact with gear internal excitation from transmission error (TE) which can affect mesh parameters.
Key Words: Hypoid gear, Shaft misalignment, Mass unbalance, Gear dynamics
TOOLS
Preview  Preview
Full text via DOI  Full text via DOI
Download Citation  Download Citation
CrossRef TDM  CrossRef TDM
  E-Mail
  Print
Share:      
METRICS
0
Scopus
235
View
14
Download
Related article
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: car@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers. All rights reserved.                
Close layer
prev next