| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 21(6); 2020 > Article
International Journal of Automotive Technology 2020;21(6): 1539-1551.
doi: https://doi.org/10.1007/s12239-020-0145-1
PREDICTION OF NONLINEAR STIFFNESS OF AUTOMOTIVE BUSHINGS BY ARTIFICIAL NEURAL NETWORK MODELS TRAINED BY DATA FROM FINITE ELEMENT ANALYSIS
Yeon-Woo Jung, Heung-Kyu Kim
Kookmin University
PDF Links Corresponding Author.  Heung-Kyu Kim , Email. krystal@kookmin.ac.kr
ABSTRACT
Due to the nonlinear behavior of rubber for bushings, the prediction of mechanical properties of the bushing requires nonlinear finite element analysis (FEA) techniques and a lot of computation time. Therefore, we propose a method to efficiently predict the stiffness of bushings using an Artificial Neural Network (ANN) model trained by data from FEA. First, FEA was performed for the designed 3D and 2D bushing models. Based on the relationship between the bushing shape design variables and the stiffness values predicted by the FEA, we trained the Multilayer Perceptron (MLP) and the Convolutional Neural Network (CNN) models among the ANN models. Given the shape design variables of the bushing model, the stiffness values were predicted by the MLP model. Given the image of the bushing model, the stiffness values were predicted by the CNN model. The stiffness prediction results showed that both models can be used to predict the stiffness of the bushings, and that the CNN model is slightly more accurate than the MLP model. In particular, it is expected that designers can easily estimate stiffness values by taking advantage of the CNN model which can use photographic images of real parts as inputs.
Key Words: Bushing, Rubber, Finite Element Analysis, Stiffness, Artificial Neural Network, Multilayer Perceptron, Convolutional Neural Network
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next