| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 22(1); 2021 > Article
International Journal of Automotive Technology 2021;22(1): 109-118.
doi: https://doi.org/10.1007/s12239–021–0012–8
NUMERICAL OPTIMIZATION OF THE DEFROSTING PERFORMANCE OF THE VEHICLE BASED ON DISCRETE ADJOINT APPROACH
Cao Sishi, Zhang Zhifei, Huang Yunwei, Zhang Quanzhou, Xu Zhongming
Chongqing University
PDF Links Corresponding Author.  Zhang Zhifei , Email. z.zhang@cqu.edu.cn
ABSTRACT
In this study, the discrete adjoint approach with the grid deformation technique based on radial basis function was presented to solve the tough problem that the complex shape of the defrosting duct is very difficult to be optimized with multiple parameters in the improvement of the defrosting performance of vehicle. Firstly, the defrosting performance of a light truck was analyzed. Then the discrete adjoint approach was applied by taking the average Nusselt-number as the objective function. The normal surface sensitivity was used in the deformation of the defrosting duct. After 10 optimization cycles, the optimal model was acquired. The results show that, after optimization, the sum of the average Nusselt-number is increased from 3164.16 to 3350.54, which has a positive effect on improving the convection and heat transfer capacity on the windshield effectively. Compared with the initial model, the airflow of the outlet near the windshield is increased from 95.07 g/s to 96.94 g/s, the defrosting time required by the optimal model is reduced by more than 20s. Therefore, the discrete adjoint approach can optimize the complex shape of defrosting duct with multiple parameters effectively, which provides an effective method in the study of automobile defrosting performance.
Key Words: Defrosting performance, Defrosting duct, Discrete adjoint approach, Grid deformation, Nusselt-number
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next