| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 22(2); 2021 > Article
International Journal of Automotive Technology 2021;22(2): 291-299.
doi: https://doi.org/10.1007/s12239-021-0028-0
A NUMERICAL ANALYSIS ON DUCTED AHMED MODEL AS A NEW APPROACH TO IMPROVE AERODYNAMIC PERFORMANCE OF ELECTRIC VEHICLE
Alemayehu Wakjira Huluka , Chul-Ho Kim
Seoul National University of Science and Technology
PDF Links Corresponding Author.  Chul-Ho Kim  , Email. profchkim@seoultech.ac.kr
ABSTRACT
Aerodynamic performance of a road vehicle has significant impact on energy efficiency, especially at high speed. Finding all possible ways to reduce aerodynamic drag has paramount importance on the development process of the vehicle. The study is conducted with an intention to contribute for driving range extension of an electric vehicle by the improvement of aerodynamic performance. In this study the effect of ducting on the aerodynamic performance of electric vehicle is given due attention as a new approach to improve aerodynamic energy efficiency. Intensive numerical calculation is made using simple body. Three-dimensional, incompressible, and steady governing equations were solved by PHOENICS version 2018 (a commercial CFD software) with extended turbulent model proposed by Chen-Kim (1987). In this numerical study, ducted and slightly modified Ahmed model is used to study aerodynamic characteristics of ducted model and how ducting would contribute to the energy consumption reduction effort from aerodynamic resistance. A significant decrease in a total drag with duct size is investigated. About 14.3 % drag reduction is observed on one of the test models used as an illustration. Furthermore, detail flow analysis made and numerical outputs included in this article are believed to have a paramount importance in the area.
Key Words: Electric vehicle drag, Aerodynamic performance, Ducted ahmed body, Driving range, Drag reduction
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next