| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 23(1); 2022 > Article
International Journal of Automotive Technology 2022;23(1): 193-203.
doi: https://doi.org/10.1007/s12239-022-0016-z
NUMERICAL PROJECTION ON OCCUPANT THERMAL COMFORT VIA DYNAMIC RESPONSES TO HUMAN THERMOREGULATION
Weijian Li1,2, Jiqing Chen1,2, Fengchong Lan1,2, Xijiao Zheng1,2, Wenbo Zeng3
1South China University of Technology
2South China University of Technology
3China National Electric Apparatus Research Institute Ltd
PDF Links Corresponding Author.  Fengchong Lan , Email. fclan@scut.edu.cn
ABSTRACT
With the different physiological properties and thermal conditions, different body parts of passengers have inconsistent thermal sensations and thermal requirements in a highly non-uniform and transient vehicle cabin thermal environment. Determining the thermal comfort requirements for different body parts of a passenger is essential for effectively supplying warm air to the right human part especially for electric vehicles with energy-saving attributes. In this paper, a comprehensive numerical model that integrates human thermal regulation mechanism and dynamic environmental characteristics is established to calculate the thermal comfort for passengers via thermal responses to a dynamic environment. The numerical computation sets up such a model structure, firstly considering human thermal regulation functions into the thermal response to the in-cabin dynamic thermal distributions, then combining Berkeley thermal comfort model to identify the thermal comfort level at different body parts, that would implement total numerical simulations to get thermal comfort evaluation, independent of human subjective feedbacks. The model is validated by experiments with an acceptable error and implemented for a cabin heating case study. The models can effectively predict the thermal comfort and thermal requirements of various body parts in a dynamic environment with human thermoregulation, as an important tool for designing a non-uniform environment.
Key Words: Vehicle thermal environment, Thermal comfort, Human thermal regulation, Thermal response, Numerical analysis
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next