| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 8(3); 2007 > Article
International Journal of Automotive Technology 2007;8(3): 361-373.
STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES
F. WANG, T. ZHANG, L. YANG, B. ZHUO
Shanghai Jiao Tong University
ABSTRACT
In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.
Key Words: Efficiency, Hybrid electric vehicles, Internal combustion engine, Steady-state optimization
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next