| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 9(2); 2008 > Article
International Journal of Automotive Technology 2008;9(2): 149-153.
INVESTIGATION ON THE FLOW AND HEAT TRANSFER CHARACTERISTICS OF DIESEL ENGINE EGR COOLERS
H.-M. KIM1, S.-K. PARK1, K.-S. CHOI1, H.-M. WANG1, D.-H. LEE1, D. K. LEE1, Y.-S. CHA1, J.-S. LEE1, J. LEE2
1Inje University
2KOREANS
ABSTRACT
An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOx). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since PM (Particulate Matter) fouling reduces the efficiency of an EGR cooler, a tradeoff exists between the amount of NOx and PM emissions, especially at high engine loads. In the present study, we performed engine dynamometer experiments and numerical analyses to investigate how the internal shape of an EGR cooler affects the heat exchanger efficiency. Heat exchanger efficiencies were examined for plain and spiral EGR coolers. The temperature and pressure distributions inside these EGR coolers were obtained in three dimensions using the numerical package program FLUENT.
Key Words: EGR Cooler, Diesel Engine, Efficiency, NOx (Nitrogen Oxide), PM (Particulate Matter)
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: car@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers. All rights reserved.                 Developed in M2community
Close layer
prev next