| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 11(3); 2010 > Article
International Journal of Automotive Technology 2010;11(3): 331-337.
doi: https://doi.org/10.1007/s12239-010-0041-1
EFFECT OF VEHICLE MODEL ON THE ESTIMATION OF LATERAL VEHICLE DYNAMICS
J. KIM
Hankook Tire Co., LTD., R&D Center
ABSTRACT
A methodology is presented for estimating vehicle handling dynamics, which are important to control system design and safety measures. The methodology, which is based on an extended Kalman filter (EKF), makes it possible to estimate lateral vehicle states and tire forces on the basis of the results obtained from sinusoidal steering stroke tests that are widely used in the evaluation of vehicle and tire handling performances. This paper investigates the effect of vehicle-road system models on the estimation of lateral vehicle dynamics in the EKF. Various vehicle-road system models are considered in this study: vehicle models (2-DOF, 3-DOF, 4-DOF), tire models (linear, non-linear) and relaxation lengths. Handling tests are performed with a vehicle equipped with sensors that are widely used by vehicle and tire manufacturers for handling maneuvers. The test data are then used in the estimation of the EKF and identification of lateral tire model coefficients. The accuracy of the identified values is validated by comparing the RMS error between experimentally measured states and regenerated states simulated using the identified coefficients. The results show that the relaxation length of the tire model has a notable impact on the estimation of lateral vehicle dynamics.
Key Words: Extended kalman filter, Tire lateral force, Magic formula, Vehicle model
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next