NUMERICAL INVESTIGATION OF A DI DIESEL SPRAY FLAME USING A DETAILED CHEMICAL REACTION MECHANISM |
B. H. SONG, J. W. SEO, Y. H. CHOI |
Ajou University |
|
|
| |
ABSTRACT |
Emission standards have grown increasingly stricter, consequently triggering greater interest in issues surrounding environmental pollution. In particular, soot and NOx released from DI diesel vehicles is considered to be the main source of air pollution in urban environments. However, the mechanics of fuel spray formation and the influence of the operating parameters on the resulting spray flame are not yet fully understood. In this study, the original KIVA code was modified to incorporate a detailed chemical reaction mechanism involving various species and multiple reaction steps to better understand the spray characteristics. n-Heptane, C7H16, was used as the representative fuel for diesel fuel, and the reaction mechanism for this fuel was composed of 66 species and 274 elementary reaction steps. The accuracy of the predicted results was demonstrated primarily by a comparison with experimental results. The numerical prediction of a specific operating condition for the parametric investigation correlates well with the experimental results. |
Key Words:
DI (Direct Injection), SMC (Soot Mass Concentration), Spray tip penetration length, Ignition delay time, Soot cloud |
|