| Home | KSAE | E-Submission | Sitemap | Contact Us |  
International Journal of Automotive Technology > Volume 18(2); 2017 > Article
International Journal of Automotive Technology 2017;18(2): 279-292.
doi: https://doi.org/10.1007/s12239-017-0028-2
R. C. ZHAO1, P. K. WONG1, Z. C. XIE3, J. ZHAO1
1University of Macau
3South China University of Technology
In this paper, a novel spacing control law is developed for vehicles with adaptive cruise control (ACC) systems to perform spacing control mode. Rather than establishing a steady-state following distance behind a newly encountered vehicle to avoid collision, the proposed spacing control law based on model predictive control (MPC) further considers fuel economy and ride comfort. Firstly, a hierarchical control architecture is utilized in which a lower controller compensates for nonlinear longitudinal vehicle dynamics and enables to track the desired acceleration. The upper controller based on the proposed spacing control law is designed to compute the desired acceleration to maintain the control objectives. Moreover, the control objectives are then formulated into the model predictive control problem using acceleration and jerk limits as constrains. Furthermore, due to the complex driving conditions during in the transitional state, the traditional model predictive control algorithm with constant weight matrix cannot meet the requirement of improvement in the fuel economy and ride comfort. Therefore, a real-time weight tuning strategy is proposed to solve time-varying multi-objective control problems, where the weight of each objective can be adjusted with respect to different operating conditions. In addition, simulation results demonstrate that the ACC system with the proposed real-time weighted MPC (RW-MPC) can provide better performance than that using constant weight MPC (CW-MPC) in terms of fuel economy and ride comfort.
Key Words: Adaptive cruise control, Model predictive control, Real-time weight tuning, Fuel economy, Ride comfort
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next