| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 20(5); 2019 > Article
International Journal of Automotive Technology 2019;20(5): 1065-1071.
doi: https://doi.org/10.1007/s12239-019-0100-1
DEVELOPMENT OF HEAT TRANSFER MODEL AT INTAKE SYSTEM OF IC ENGINE WITH CONSIDERATION OF BACKFLOW GAS EFFECT
Emir Yilmaz, Mitsuhisa Ichiyanagi, Takashi Suzuki
Sophia University
PDF Links Corresponding Author.  Takashi Suzuki , Email. suzu-tak@sophia.ac.jp
ABSTRACT
Improving thermal efficiency of internal combustion engines has been a priority in the automotive industry. It is necessary to model the heat transfer phenomenon at the intake system and precisely predict intake air’s mass flow rate into the engine cylinder. In the previous studies, the heat transfer at the intake system was modeled as quasi-steady state phenomenon, based on Colburn analogy. Authors developed two empirical equations with the introduction of Graetz and Strouhal numbers. In the present study, further improvements were done by the addition of pressure ratio between the intake manifold and atmospheric pressure, along with Reynolds number in order to characterize the backflow gas effect on intake air temperature. Compared with the experimental results, maximum and average errors of intake air temperature estimations inside the manifold found to be 2.9 % and 0.9 %, respectively.
Key Words: Engine, Intake manifold, Heat transfer, Backflow gas, Intake air temperature
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next