| Home | KSAE | E-Submission | Sitemap | Contact Us
International Journal of Automotive Technology > Volume 14(6); 2013 > Article
International Journal of Automotive Technology 2013;14(6): 829-836.
GS caltex
The relationship between the oxygen content in gasoline and the particulate emission (particle number and weight) was investigated. In order to study the influence of the engine configuration on the particulate emission, four vehicles were tested in which the following systems were installed: Vehicle 1 was equipped with direct injection system which uses central mounted outwardly opening injectors. Vehicle 2 and 3 used direct injection with a side mounted multihole injectors and Vehicle 4 had port fuel injection system. Methyl tert-butyl ether (MTBE) was used as the oxygen booster. The oxygen content in the gasoline was varied from 1 to 3 wt%, which corresponds with an MTBE dosage from 3.55% to 16.11%. This study used fuel that contained the same octane number with a 2% oxygen content without oxygen components, and it was used as the reference fuel in order to distinguish the effect of the oxygen content increases and the octane boosts that result from the MTBE. All vehicle tests were performed on a roller type chassis dynamometer using the New European Driving Cycle (NEDC) and Federal Test Procedure-75 (FTP-75) cycle. The experiment results demonstrate that the oxygen content increases in the gasoline reduced the particulate emission in vehicles with direct injection engines. An equivalent phenomenon was observed in a vehicle with a port fuel injection engine, but its absolute particle number was much smaller than that of the gasoline direct injection engine. The amount of reduction of the particle number in the start (cold) phase of the test cycle was significant compared with the later (hot) phase engine operation. However, particulates were emitted even though the engine was fully warmed up, especially when the engine was highly loaded. Other factors such as fuel economy or other exhaust emissions were not significantly affected by the oxygen content.
Key Words: Gasoline direct injection, Particulate matter, Particle number, Oxygenate, Methyl tert-butyl ether
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971/2   FAX: +82-2-564-3973   E-mail: car@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers. All rights reserved.                 Developed in M2community
Close layer
prev next