| Home | KSAE | E-Submission | Sitemap | Contact Us |  
International Journal of Automotive Technology > Volume 23(6); 2022 > Article
International Journal of Automotive Technology 2022;23(6): 1651-1661.
doi: https://doi.org/10.1007/s12239-022-0143-6
Jukka Hyttinen 1,2, Matthias Ussner 1, Rickard Österlöf 1, Jenny Jerrelind 2, Lars Drugge 2
1Scania CV AB
2ECO2 Vehicle Design, Engineering Mechanics, KTH Royal Institute of Technology
PDF Links Corresponding Author.  Jukka Hyttinen  , Email. jahyt@kth.se
Rolling resistance is consuming a large portion of the generated powertrain torque and thus have a substantial effect on truck energy consumption and greenhouse gas emissions. EU labelling of tyres mandates the manufacturers to measure rolling resistance at +25 °C ambient temperature after stabilised rolling resistance has been established. This is a convenient way of comparing rolling resistance but disregards aspects such as transient rolling resistance and influence of the ambient temperature. For many purposes, such as dimensioning batteries for electric vehicles, this value is not representative enough to give a good understanding of the rolling resistance. In this article, the rolling resistance of a truck tyre was measured at different ambient temperatures (-30 to +25 °C) in a climate wind tunnel and a considerable tyre and ambient temperature dependency on rolling resistance was found. The investigation shows that the temperature inside the tyre shoulder has a good correlation with rolling resistance. Measurements with spraying water on tyres were conducted showing a considerable increase in rolling resistance due to higher cooling effect. Driving range simulations of a long haulage battery-electric truck have been conducted with temperature-dependent rolling and aerodynamic resistance, showing a significant decrease in driving range at decreasing temperature.
Key Words: Truck tyre, Rolling resistance, Climate wind tunnel, Ambient temperature, Tyre temperature, Batteryelectric truck range
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next