| Home | KSAE | E-Submission | Sitemap | Contact Us |  
top_img
International Journal of Automotive Technology > Volume 13(2); 2012 > Article
International Journal of Automotive Technology 2012;13(2): 301-308.
doi: https://doi.org/10.1007/s12239-012-0028-1
EXPANDING TRANSMISSION CAPACITY OF CAN SYSTEMS USING DUAL COMMUNICATION CHANNELS WITH KALMAN PREDICTION
M. H. KIM1, S. LEE1, K. C. LEE2
1Pusan National University
2Pukyong National University
ABSTRACT
The controller area network (CAN) protocol is widely used for in-vehicle network (IVN) systems, and many automotive companies also use the CAN in chassis network systems. However, the increasing number of electronic control units (ECUs) dictated by the need for more intelligent and fuel-efficient functions requires an IVN system with a greater transmission capacity and less network delay. Automotive companies have tried several approaches such as segmenting CAN systems and developing time-triggered protocols. This paper presents a practical method for increasing the transmission capacity and reducing the network delay in CAN systems using dual communication channels with a traffic-balancing algorithm based on Kalman prediction to forecast the traffic on each channel and allocate frames to the one that is most appropriate. An experimental testbed using commercial microcontrollers with two or more CAN protocol controllers was used to demonstrate the feasibility of the Kalman traffic-balancing algorithm. Experimental results show that the traffic-balancing CAN system with Kalman prediction reduced the transmission delay of all priority messages compared to that of a simple method, such as a channel-switching CAN, without sacrificing the performance for high-priority messages.
Key Words: IVN (In-Vehicle Network) system, CAN (Controller Area Network), Transmission capacity, Kalman trafficbalancing algorithm, Kalman prediction method
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971   FAX: +82-2-564-3973   E-mail: manage@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers.                 Developed in M2PI
Close layer
prev next