| Home | KSAE | E-Submission | Sitemap | Contact Us
top_img
International Journal of Automotive Technology > Volume 17(3); 2016 > Article
International Journal of Automotive Technology 2016;17(3): 415-425.
doi: https://doi.org/10.1007/s12239-016-0043-8
ROBUST ESTIMATION OF MAXIMUM TIRE-ROAD FRICTION COEFFICIENT CONSIDERING ROAD SURFACE IRREGULARITY
K. HAN, Y. HWANG, E. LEE, S. CHOI
KAIST
ABSTRACT
An accurate estimation of the maximum tire-road friction coefficient may provide higher performance in a vehicle active safety control system. Unfortunately, real-time tire-road friction coefficient estimation is costly and necessitates additional sensors that must be installed and maintained at all times. This paper proposes an advanced longitudinal tire-road friction coefficient estimation method that is capable of considering irregular road surfaces. The proposed algorithm uses a stiffness based estimation method, however, unlike previous studies, improvements were made by suggesting a third order model to solve problems related to nonlinear mu-slip curve. To attain the tire-road friction coefficient, real-time normalized force is obtained from the force estimator as exerted from the tire in the low slip region using the recursive least squares method. The decisive aspect of using the suggested algorithm lies in its low cost and versatility. It can be used under irregular road conditions due to its capability of easily obtaining wheel speed and acceleration values from production cars. The newly improved algorithm has been verified to computer simulations as well as compact size cars on dry asphalt conditions.
Key Words: Tire-road friction coefficient, Vehicle safety control system, Wheel dynamics, Unknown input observer, Suspension dynamics, Mu-slip curve
Editorial Office
21 Teheran-ro 52-gil, Gangnam-gu, Seoul 06212, Korea
TEL: +82-2-564-3971/2   FAX: +82-2-564-3973   E-mail: car@ksae.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Automotive Engineers. All rights reserved.                 Developed in M2community
Close layer
prev next